Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal.

نویسندگان

  • R J Crowder
  • R S Freeman
چکیده

Numerous studies reveal that phosphatidylinositol (PI) 3-kinase and Akt protein kinase are important mediators of cell survival. However, the survival-promoting mechanisms downstream of these enzymes remain uncharacterized. Glycogen synthase kinase-3 beta (GSK-3 beta), which is inhibited upon phosphorylation by Akt, was recently shown to function during cell death induced by PI 3-kinase inhibitors. In this study, we tested whether GSK-3 beta is critical for the death of sympathetic neurons caused by the withdrawal of their physiological survival factor, the nerve growth factor (NGF). Stimulation with NGF resulted in PI 3-kinase-dependent phosphorylation of GSK-3 beta and inhibition of its protein kinase activity, indicating that GSK-3 beta is targeted by PI 3-kinase/Akt in these neurons. Expression of the GSK-3 beta inhibitor Frat1, but not a mutant Frat1 protein that does not bind GSK-3 beta, rescued neurons from death caused by inhibiting PI 3-kinase. Similarly, expression of Frat1 or kinase-deficient GSK-3 beta reduced death caused by inhibiting Akt. In NGF-maintained neurons, overexpression of GSK-3 beta caused a small but significant decrease in survival. However, expression of neither Frat1, kinase-deficient GSK-3 beta, nor GSK-3-binding protein inhibited NGF withdrawal-induced death. Thus, although GSK-3 beta function is required for death caused by inactivation of PI 3-kinase and Akt, neuronal death caused by NGF withdrawal can proceed through GSK-3 beta-independent pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal.

Glycogen synthase kinase-3beta (GSK3beta) activity is negatively regulated by several signal transduction cascades that protect neurons against apoptosis, including the phosphatidylinositol-3 kinase (PI-3 kinase) pathway. This suggests the interesting possibility that activation of GSK3beta may contribute to neuronal apoptosis. Consequently, we evaluated the role of GSK3beta in apoptosis in cul...

متن کامل

Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3.

Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase member that activates the c-Jun N-terminal kinase (JNK) pathway. Aberrant activation of MLK3 has been implicated in neurodegenerative diseases. Similarly, glycogen synthase kinase (GSK)-3beta has also been shown to activate JNK and contribute to neuronal apoptosis. Here, we show a functional interaction between ML...

متن کامل

Glycogen synthase kinase 3 activity mediates neuronal pentraxin 1 expression and cell death induced by potassium deprivation in cerebellar granule cells.

Expression of neuronal pentraxin 1 (NP1) is part of the apoptotic cell death program activated in mature cerebellar granule neurons when potassium concentrations drop below depolarizing levels. NP1 is a glycoprotein homologous to the pentraxins of the acute phase immune response, and it is involved in both synaptogenesis and synaptic remodeling. However, how it participates in the process of ap...

متن کامل

Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax.

The prevention of apoptosis is a key function of growth factors in the regulation of erythropoiesis. This study examined the role of the constitutively active serine/threonine kinase glycogen synthase kinase-3 (GSK3), a target of the phosphoinositide-3-kinase (PI3K)/Akt pathway, in the regulation of apoptosis in primary human erythroid progenitors. GSK3 phosphorylation at its key regulatory res...

متن کامل

Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons.

Recent studies have suggested a role for phosphatidylinositol (PI) 3-kinase in cell survival, including the survival of neurons. We used rat sympathetic neurons maintained in vitro to characterize the potential survival signals mediated by PI 3-kinase and to test whether the Akt protein kinase, a putative effector of PI 3-kinase, functions during nerve growth factor (NGF)-mediated survival. Two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 44  شماره 

صفحات  -

تاریخ انتشار 2000